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NONLINEAR ACCELERATOR PROBLEMS VIA WAVELETS:
4. SPIN-ORBITAL MOTION

A. FedorovaM. Zeitlin, IPME, RAS, St. Petersburg, Russi&

Abstract L e GGE B)7
. . . L 3.3
In this series of eight papers we present the applications of mpety (1+7)
methods from wavelet analysis to polynomial approxima- n e GG+ 1[ E]
tions for a number of accelerator physics problems. In this mgety  (1+7) 7

part we consider a model for spin-orbital motion: orbital ) -

dynamics and Thomas-BMT equations for classical spii = (41:42,93);P = (p1,p2,p3) are canonical position
vector. We represent the solution of this dynamical sy&Nd momentums = (s, s, s3) is the classical spin vec-
tem in framework of biorthogonal wavelets via variationaf" Of 1ength%1/2, @ = (m, 72, 73) is kinetic momen-

approach. We consider a different variational approacf!™ vector. We may introduce in 9-dimensional phase

which is applied to each scale. spacez = (g, p,s) the Poisson bracketsf(z),g(z)} =
fa9p — fp9q + [fs X gs] - s and the Hamiltonian equations

1 INTRODUCTION aredz/dt = {z, H} with Hamiltonian

This is the fourth part of our eight presentations in which H = Horp(g,p: 1) +wlg, p,1t) - 5. @)

we consider applications of methods from wavelet anal

. : . anaYViore explicitly we hav
sis to nonlinear accelerator physics problems. This is qore exp citly we have

continuation of our res.ults.from [1]—[5_3], which is based on dg OHoy 0w - )
our approach to investigation of nonlinear problems — gen- a@ op op
eral, with additional structures (Hamiltonian, symplectic or
; . . . . dp OHory 0w - s)
gquasicomplex), chaotic, quasiclassical, quantum, which are % - e B 3)
considered in the framework of local (nonlinear) Fourier t q q
analysis, or wavelet analysis. Wavelet analysis is a rela- ds = [wxs]
tively novel set of mathematical methods, which gives us de

a possibility to work with well-localized bases in func-\ye wi|l consider this dynamical system also in another pa-
tional spaces and with the general type of operators (difg yia invariant approach, based on consideration of Lie-
ferential, integral, pseudodifferential) in such bases. In thissison structures on semidirect products. But from the
part we consider spin orbital motion. In section 3 we COM50int of view which we used in this paper we may con-

sider generalization of our approach from part 1 to varigsjger the similar approximations as in the preceding parts

tional formulation in the biorthogonal bases of compactlynq then we also arrive to some type of polynomial dynam-
supported wavelets. In section 4 we consider the differepty.

variational multiresolution approach which gives us possi-

bility for computations in each scale separately. 3 VARIATIONAL APPROACH IN

BIORTHOGONAL WAVELET BASES

2 SPIN-ORBITAL MOTION
. . . . Because integrand of variational functionals is represented
Let us consider the syste.m of equatlo'ns for Qrbltal mOt'oBy bilinear form (scalar product) it seems more reasonable
and Thomas-BMT equation for classical spin vector [g]to consider wavelet constructions [10] which take into ac-
dg/dt = OHory/Op, dp/dt = —OHor/0q, ds/dt = .1 all advantages of this structure. The action functional
w X 5, where for loops in the phase space is [11]

H,p = c72+moc? +ed,

1
e . F(y)= [ pdq— | H(t,~(t))dt 4
w= — ——(1+~G)B 1) () /qu /0 (t, (1)) 4
mocy
*e-mail: zeitin@math.ipme.ru The critical points ofF' are those loops, which solve

1 http:/Avww.ipme.ru/zeitlin.html; http:/mww.ipme.nw.ru/zeitin.html - the Hamiltonian equations associated with the Hamiltonian
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H and hence are periodic orbits. By the way, all criticalvherey; (z) = 27/2¢(27x—k). Functionsp(x), $(z—k)

points of " are the saddle points of infinite Morse index form dual pair:< ¢(z — k), @(x — £) >= dp1, < (v —

but surprisingly this approach is very effective. This willk), ¥ (x —¢) >= 0. Functionsp, ¢ generate a multiresolu-

be demonstrated using several variational techniques stafon analysis.p(x — k), ¥(x — k) are synthesis functions,

ing from minimax due to Rabinowitz and ending with Floers(z — /), 1[;(1- — ¢) are analysis functions. Synthesis func-

homology. So(M, w) is symplectic manifoldsi{ : M —  tions are biorthogonal to analysis functions. Scaling spaces

R, H is Hamiltonian, Xy is unique Hamiltonian vec- are orthogonal to dual wavelet spaces. Two multiresolu-

tor field defined byw(Xy(z),v) = —dH(z)(v), v € tionsare intertwining/; +W; = V; 41, X7j+/W/j = X~/j+1_

T.M, =z € M, wherew is the symplectic structure. These are direct sums but not orthogonal sums.

A T-periodic solutionz(t) of the Hamiltonian equations  So, our representation for solution has now the form

& = Xpg(z) on M is a solution, satisfying the boundary _

conditionsz(T) = #(0),T > 0. Let us consider the loop F&) = birtbje(t), (11)

space} = C>(S', R?"), whereS! = R/Z, of smooth gk

loops in R*". Let us define a functio® : & — Rby \yhere synthesis wavelets are used to synthesize the func-

setting tion. But bj, come from inner products with analysis

14 1 wavelets. Biorthogonality yields

() :/ Yo e ar —/ Hz()dt, z€9 ) ]
0 2 o © bom = [ £ (B 12)

The critical points ofP are the periodic solutions af =
Xp(z). Computing the derivative at € 2 in the direction
of y € Q, we find

So, now we can introduce this more complicated construc-
tion into our variational approach. We have modification
only on the level of computing coefficients of reduced non-

d linear algebraical system. This new construction is more
'(z)(y) = 7. 2@ +ey)leo = (6) flexible. Biorthogonal point of view is more stable un-
1 der the action of large class of operators while orthogonal
/ < —Ji—vH(z),y>dt (one scale for multiresolution) is fragile, all computations
0

are much more simpler and we accelerate the rate of con-

vergence. In all types of Hamiltonian calculation, which

are based on some bilinear structures (symplectic or Pois-

sonian structures, bilinear form of integrand in variational
—Ji(t) — vH(z(t)) =0, (7) integral) this framework leads to greater success. In par-

ticular cases we may use very useful wavelet packets from

i.e. z(t) is a solution of the Hamiltonian equations, whichFig. 1.

also satisfies:(0) = x(1), i.e. periodic of period 1. Pe-

riodic loops may be represented by their Fourier series

x(t) = > eF?m Tty 2 € R*, whereJ is quasicomplex

structure. We give relations between quasicomplex struc

ture and wavelets in our other paper. But now we need tc

take into account underlying bilinear structure via wavelets.

We started with two hierarchical sequences of approxima:

tions spaces [10]:

Consequently®’(z)(y) = 0 for all y € Q iff the loop x
satisfies the equation

VeV VgV C Vs, (8)
Ve cVaicVocViCVy...,

and as usuallyJ¥, is complement td/y in Vi, but now
not necessarily orthogonal complement. New orthogonal-

ity conditions have now the following form:
Figure 1: Wavelet packets.

Wo LV, WolVo, V;LW,, V;LW, (9)

translates of) span Wy, translates ofp span W,. 4 EVALUATION OF NONLINEARITIES
Biorthogonality conditions are SCALE BY SCALE.NON-REGULAR
APPROXIMATION.

< Wihes Vo >= /_Oo ik ()5 (€)dT = Orre 01, We use wavelet functior(z), which hask vanishing mo-
(10) ments [ 2"y (z)dz = 0, or equivalentlyz® = Y cop0()
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for eachk, 0 < k < K. Let P; be orthogonal projector on and since the projection error it || f (u) — Py (f(u)) || 12
spaceV;. By tree algorithm we have for any € L?(R) is much smaller than the projection error i) we have
and/ € Z, that the wavelet coefficients @%(u), i.e. the the improvement (20) of (18). In concrete calculations and
set{< u,v¥;r >,j <{—1,k € Z} can be compute using estimates itis very useful to consider approximations in the
hierarchic algorithms from the set of scaling coefficients iparticular case of c-structured space:

Vi, i.e. the se{< w,pp >,k € Z} [12]. Because for

scaling functiony we have in general only p(z)dz = 1, ~ Ly
therefore we have for any functione L?(R): V= Vit Z span{{j i, (22)
J=q
; j/2 . _ _ . . )
j%oo%}cgn—jaz |27 <,k > —u(z) [=0 (13) k¢ [2(]_1) — ¢, 207D 4 ¢/ mod 27}
If the integern(¢p) is the largest one such that We are very grateful to M. Cornacchia (SLAC), W. Her-

N rmannsfeldt (SLAC), Mrs. J. Kono (LBL) and M. Laraneta
/w ple)de =0 for 1<a<n (14)  (ucLA) for their permanent encouragement.

i (n4+1) i (n+1) i
then |fu € C' with u bounded we have for — 5 REFERENCES
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